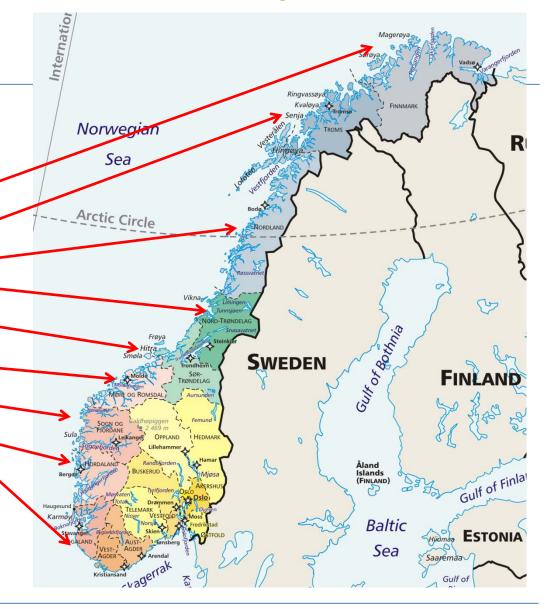


Is a modal shift to Short Sea Shipping within reach for fresh fish? A feasibility study.

Oostende, 20 February 2014

W. Lukas, K. Jantzen, P. Milde, D. Heimann, E.-J. Ribbert



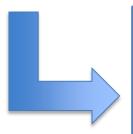
Salmon production in Norway, 2010 -2012

Atlantic salmon (1000 metric tonnes)						
Fylke	2010	2012				
Finnmark	51	90	75%			
Troms/Romsa	107	139	30%			
Nordland	191	230	20%			
Nord-Trøndelag	80	122	52%			
Sør-Trøndelag	107	141	32%			
Møre og Romsdal	112	118	6%			
Sogn og Fjordane	78	96	23%			
Hordaland	137	212	55%			
Rogaland	64	80	24%			
Øvrige fylker	12	14	21%			
Totalt/Total	940	1241	32%			

foodport

Between and Beyond

Objective


In order to....

reduce CO₂ emissions and to make things more efficient...

Modal shift from land-based transport to short-sea shipping

- 1. land-based transport
- 2. short-sea shipping (SSS)

Feasibility study

- a. CO₂ emission calculation
- b. Technical feasibility
- c. Economic efficiency
- d. Market forces

a. CO₂ emissions calculation

Scenarios	Modalities	CO2 emissions	s (in kg) per kg (WTW)
Narvik – Bremerhaven	Truck	2,816	
1. Narvik – Oslo – Bremerhaven	Rail – Truck	1,782	Norwegian Sea
2. Mo i Rana – Trondheim –Oslo	Rail – Truck	1,546	
3. Mo I Rana - Trondheim - Hitra - Kristiansund - Bremerhaven	Rail – Truck – Ship	1,009	Sverige (Sweden)
4. Hitra – Bremerhaven	Ship	0,388	Norge (Norway)
5. Hitra – Stavanger – Bremerhaven	Ship	0,409	B Stockholm
6. Hitra – Aalesund –Bergen – Stavanger – Kristiansand – Bremerhaven	Ship		North Sea Danmark (Cenmark) C Baltic Sea Lie (Lith
			Nederland Berlin (Netherlands) Polska (Poland) Belgique Deutschland België (Germany) Wrocław

b. Technical feasibilityc. Economic efficiency

Scenarios	Modalities	Transport times (intermodal solution hours)	tion,	Tranport times (truck solution, in hours)
1. Narvik – Oslo – Bremerhaven	Rail – Truck	47,4		52,2
2. Mo i Rana – Trondheim –Oslo	Rail – Truck	40,9		42,2
3. Mo I Rana - Trondheim - Hitra - Kristiansund - Bremerhaven	Rail – Truck – Ship	55,3		42,2
4. Hitra – Bremerhaven	Ship	42,3		35,5
5. Hitra – Stavanger – Bremerhaven	Ship	46,5		35,5
6. Hitra – Aalesund – Bergen – Stavanger – Kristiansand – Bremerhaven	Ship	take	e more	35,5 ransport times with truck time due to rest periods and ferries for some parts of the
			nsport.	

Costs

Based on market prices

- Truck transport from Mid-Norway to Bremerhaven costs approx.
 2600€/Container
- Ship transport Aalesund Bremerhaven costs approx. 1000€/Container incl. services, excl. transport to and from the port.
- Already today financially attractive.

BUT:

✓ Today's cut-off times at the port or origin and handling at the port of destination increase the travel time of 2 days up to a total time for the transport of

5 days => unacceptable for fresh fish

Quantities needed

- Market for fresh fish requires daily delivery but volumes are far below the a full ship load
- Total German quantities today would cover around 10% of the available reefer capacity of a feeder ship
- Alternative solutions and further requirements:
 - Use of smaller feeder ships
 - Accept a very low load factor or subsidize sea transport
 - Identify additional load (anyhow needed for the non-reefer capacities on the feeder ship)
 - Identify return cargo

d. Market forces

Visual appearance of fresh fish

reveals

degree of quality

which is

more important than CO₂ -Emissions

Eco-labelling considered as important

BUT

eco-labels not really credible

nevertheless

A *new* carbon footprint label for fish is desired

Results

Modal shift from land-based transport to short sea shipping of salmon is attractive, but not yet feasible

- with regard to CO2 emissions calculations > YES
 Note: CO₂ calculations are solely based on transportation process and do not represent the overall carbon footprint of the product.
- with regard to costs > YES, but affected by the critical success factors "time" and "quantities"
- with regard to market forces > YES, but quality is put before the reduction of CO₂ emissions
- with regard to quantities that could be carried by a feeder ship > NO

... another modal shift with zero CO2

a. CO₂ emissions calculation

Assumptions:

- 1. 40' reefer container (3780kg) + 25 pallets à 567kg each = 17955 kg
- Well-to-Wheel (WTW)
- 3. Per modal shift one charging process
- 4. Truck: consumption of 34l/100km incl. cooling unit
- 5. Ship speed: 17,1 kn
- 6. Feeder ship with 585 container TEU, and 204 reefer TEU
- Electricity production for rail is highly dependent on energy mix (renewable energies) > Tank-to-Wheel (TTW) would be nearly zero in Sweden and Norway
- 8. Capacity utilisation ship: 65%; truck and rail 80%